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Morphology of the Heesch Magnetic Groups and Associated Magnetic Aspects 
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The structures of the 122 magnetic point groups (Heesch groups) and their relation to the structures of 
the 32 associated magnetic aspect groups, underlying point groups and invariant subgroups are studied 
and enumerated in a physically meaningful scheme. It is shown that in many instances the number of 
classes of a given group is simply related to the number of classes of an associated group, and these rela- 
tions are given. 

The concept of generalization of the crystallographic 
point and space groups through inclusion of an opera- 
tion which reverses the value of a two-valued quantity 
was originally introduced by Heesch (1930). This con- 
cept has turned out to be a very useful one in the study 
of magnetic crystal structures (Donnay, Corliss, Don- 
nay, Elliott & Hastings, 1958). There result, from the 
generalization of the 32 ordinary crystallographic 
point groups through the introduction of a change-of- 
color (black-white) operation and its identification 
with time reversal, 122 magnetic groups (Donnay & 
Donnay, 1959; Donnay, 1967) which have been called 
the Heesch groups (Riedel & Spence, 1960; Spence & 
van Dalen, 1968). 

The group A, obtained from a given Heesch group 
H by replacing all improper rotations by the corre- 
sponding proper rotations, and by replacing all time- 
reversing proper and improper rotations by the corre- 
sponding improper rotations was introduced by Don- 
nay & Donnay (1959) and was called the (magnetic) 
aspect group by Spence & van Dalen (1968). The im- 
portance of the magnetic aspect group derives from 
the fact that it is uniquely determinable by n.m.r. 
experiments. 

The underlying point group G is obtained from H 
by replacing all time-reversing elements of H by the 
corresponding non-time-reversing elements. The in- 
variant subgroup S is that group which is obtained by 

deleting all time-reversing elements from H. In the 
case that H is one of the 32 grey or one of the 58 
black-white Heesch groups, S is an invariant subgroup 
of H of index 2. In the case that H is one of the 32 
colorless Heesch groups, the invariant subgroup S 
is equal to H itself. 

The above definitions are summarized in Table 1. 
Throughout, time reversal will be denoted by single 
prime and improper rotations by a bar affixed to the 
appropriate symbols. 

Table 1. Relation between the elements of  the 
Heesch group H, aspect group A, underlying 

point group G, and invariant subgroup S 

Operation in H H A G S 
n-fold rotation n n n n 
n-fold time-reversal rotation n' ~ n omit 
n-fold improper rotation a n ,q ~q 
n-fold improper time-reversal rotation ~' ~ ri omit 

Any group A, G, or S can be shown to be one of the 
ordinary 32 crystallographic point groups which can be 
classified as follows: 

Type I: This type is comprised of the 11 pure rota- 
tion groups 1,2, 3, 4, 6, 222, 32, 422, 622, 23, and 432 
and will be designated by R. 

Type II: These are the 11 groups obtained as the 
direct product group of a Type I group with the inver- 
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sion group T, viz., T, 2/m, ~, 4/m, 6/m, mmm, -3m, 
4/mmm, 6/mmm, m3, and m3m. These groups are thus 
R × T = R + / ~ = R + I R  and have R as an invariant 
subgroup of index 2. Here the symbol T denotes the 
inversion operation and TR=/~ is the coset of R ob- 
tained by multiplying each element of R by the inver- 
sion. The number of classes of the group R +/~ is equal 
to twice the number of classes of R. Type I I is the only 
type which contains the inversion T as a group element. 

Type III: The remaining ten crystallographic point 
groups, viz. mm2, 3m, 4mm, 6mm, m, 6, 42m, 6m2, 
~, and 43m have the structure R + 37 where R is a pure 
rotation group and 37 is a set of improper rotations 
such that no element of the set of corresponding 
proper rotations K is in R, and R is an invariant sub- 
group of R + 3?. Thus R + 37 = R + JR = R + r/~, where 

is a coset representative of the coset 37 and r is the 
corresponding proper rotation. It can be shown (Lo- 
mont, 1959) that the pure rotation group R + K  is 
isomorphic to R + 3?. Therefore, the number of classes 
of R+37 is equal to the number of classes of R + K .  
Both R and 3? (or K) consist of complete classes. 
However, the number of classes of R+37 is not 
necessarily equal to twice the number of classes of R 
unless both R and R + / £  are Abelian. Furthermore, 
the number of classes of the pure rotation group R, 
when taken by itself, is not, in general, equal to the 
number of classes of the invariant subgroup R of G 
= R + 37 when R is part of G. 

In accordance with the above discussion the three 
types of crystallographic point group will be desig- 
nated as" R (Type I); R +/~ = R + TR (Type II); and 
R + 3?= R + r/~ (Type III). 

32 Colorless Heesch groups 

Here three cases arise as follows: 

(a) H = G = S = R  A = R  
(b) H = G = S = R + R  A = R  
(c) H = G = S = R + 3 ?  A = R + K  

Thus, G and S may be either Type I, II, or Ill, but 
the aspect group is always Type I. For the number of 
classes n one has 

nn =na =ns =ha for (a) and (c), S does not contain T 
nn=nG=ns=2na for (b), S contains T. 

It is easy to prove that all the above statements are also 
valid for the corresponding double groups. 

32 Grey Heesch groups 

The grey groups contain time reversal 1' as an element 
and therefore their aspect group must contain the 
inversion ] as an element, i.e., A is Type II. Three 
cases can be distinguished according as S is Type I, 
II, or III, as follows" 

(a) H = G + G ' = R + R '  
S = R  A = R + / ~  

(b) H = G + G ' = ( R + R ) + ( R + R ) '  
S = R + R  A = R + R  

(c) H=G+G'=(R+3?)+(R+3?)' 
S=R+3? A=(R+3?)+(R+3?). 

From this it can be seen that one has for the classes: 

nn = 2nG = 2ns = nA for (a) and (c), S does not contain T 
nn = 2n~ = 2ns = 2ha for (b), S contains T. 

These considerations are also valid for the double 
groups. 

21 Black-white Heesch groups with type II aspect groups 

Since the time-reversing elements of H go to improper 
rotations in the formation of the aspect group, black- 
white groups cannot have Type I aspect groups. In 
this section we consider the black-white Heesch groups 
that have Type II aspect groups, and the Type III 
aspect groups will be discussed in the section following. 

If A is of Type II, then H contains 1' and hence H 
cannot contain T since H is black-white. Therefore G 
contains T and is of Type II; and S does not contain T, 
so S is either of Type I or of Type III. We thus have 
two cases as follows: 

(a) S is of Type I: 

H = R + I ~ '  G = R + ~  S = R  A = R + ~ = G .  

For the second case, let R~ be a Type I invariant sub- 
group of the pure rotation group R, R=R~+rR~ 
where r is a coset representative of the coset rRs. Then 

(b) S is of Type llI: 

H=(Rs  + rt~s) + (Rs + rRs)' 
G = Rs + rRs + Rs + rR~ = R + 

S = Rs + r ~  
A = R + R = G .  

From this it follows for both (a) and (b) that 

nH = nG = 2 n s  = nA 

with the same relations also valid for the double 
groups. 

All eleven Type I and all ten Type III point groups 
appear as S in this category because every R can be 
used as the group S to generate a distinct Heesch 
group, case (a), and every R + 37 can be used as the 
group S to generate a distinct Heesch group, case (b). 
There are, therefore, 21 black-white Heesch groups 
with Type II aspect groups. 

37 Black-white Heesch groups with type III aspect groups 

When A is of Type III, A does not contain 1, therefore 
H does not contain 1'. Hence S may contain T but need 
not necessarily. If S contains T (Type II), then H 
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contains T, and if S does not contain T (Type I or 
Type III), then H does not c o n t a i n / .  With this it is 
possible to distinguish four cases" 

(a) H = R + r R '  
S = R (Type I) 

(b) H = R + r R '  

S = R (Type I) 

(c) H = ( R + t ~ ) + r ( R + R ) '  

S = R +/~ (Type II) 

(d) H=R~+Ks+r(R~+R,~) '  

S = R~ + / ~  (Type Il l)  

G = R + rR (Type I) 
A = R + r R = R + K ,  

G = R + r R = R + K  
(Type II) 

A = R + r R = R + K = G  

G = ( R + r R ) + ( R + r R )  
(Type II) 

A = R + r R = R + K  

G = R ~ + g ~ + r ( R ~ + F , O  
(Type I l l )  

A = R + r R = R + K  

where R = R s + K s ,  r /~=/ (=r ( / ?~+/ f s ) .  

F rom the above, one can determine that for both the 
single and the double groups 

nn=na=na=ng+-g  and ns=nR for (a), (b) and (d), 
S does not contain T, 

nn =ha =2ha  =2nR+~ and ns =2nR for (c), S contains T. 

There exists, however, no simple general proportion- 
a!ity between na+~ and n~ unless both R and R + /~  are 
Abel ian in which case necessarily 2nR=nR+e. This is 
the case for the single and double groups R + / ~ = m ,  
4, and 6, and for the single group R + K = m m 2 .  The 

Table 2. The number o f  classes in the groups 

R + K  
i n  

-6 
ram2 
4mm 
;~2m 
3m 
;~3m 
6ram 
~m2 

R + F2 and R 

Single groups Double groups 

R+ K R nn+~ nn nn+~ nn 
2 1 2 1 4 2 
4 2 4 2 8 4 
6 3 6 3 12 6 

222 2 4 2 5 4 
422 4 5 4 7 8 
422 222 5 4 7 5 

32 3 3 3 6 6 
432 23 5 4 8 7 
622 6 6 6 9 12 
622 32 6 3 9 6 

Table 3. Classification o f  the groups G, S, and 
A into types I, II, and I l l  

Group: 
Type" 

G S A H Number 
I I 1 colorless 11 

II II I colorless 11 
III III I colorless 10 

I I II grey 11 
II II II grey 11 

III III II grey 10 
II I I1 black-white 11 
II III II black-white 10 
I I III black-white 10 

I I I III black-white 10 
II 1I III black-white 10 

III III III black-white 7 

of H 

number  of classes nR+~=nR+r  and nR are given in 
Table 2 for all ten R+/~ .  All possibilities of  our 
enumerat ion scheme are now exhausted, and they are 
summarized in Table 3. 

D i s c u s s i o n  

In general, the classes of a group are the same in 
number  as the sets of  like operations around physically 
equivalent axes. When it is found that the number  of 
classes of one of the groups considered is equal to the 
number  of classes of a related group, the two groups 
have an equal number  of sets of  like operations around 
equivalent axes, whereas a doubling of classes implies 
that the number  of sets of  equivalent axes is doubled 
(or halved) when one forms one group from the other 
according to the pattern of  Table 1. Our analysis 
shows that in the case of the Heesch groups with 
Type III aspect groups, the number  of sets of  equi- 
valent axes of the invariant  subgroup S is, in general, 
neither unchanged,  nor  halved, nor doubled when 
compared to the number  of equivalent axes of  the 
related groups, whereas in the other instances it is. 

The theory of group representations for unitary 
groups shows that the number  of classes of a group 
is equal to its number  of nonequivalent  irreducible 
representations. Therefore, all relations we have stated 
concerning the number  of classes of G, S, A, and H 
are also true for the number  of nonequivalent  irredu- 
cible representations of G, S, A, and H. 

The nonequivalent  irreducible representations of H 
are identical with the nonequivalent  irreducible repre- 
sentations of G when H is colorless (since H = G ) ,  
and also when H is black-white  since in that case H 

Table 4. Errata, Spence & van Dalen (1968), Table 1 

Heesch group no. Incorrect Con ected 

5 1" Y" 
18 ram'2" 2'm'm 
19 22'2' 2'2'2 
20 D l m  " n l '  m '  l~ l 'm 

40 4'2'2 4'22' 
43 2~2'nz ~'m2' 
44 41rnmm" 4'lmmm' 
57 4/mmm 4/m'm'm" 
59 4'/m" mm 4"/m' m" m 
81 6/m 6'/m' 
85 6/m 6/m' 
86 6/m 6"/m 
91 ~2m ~m2 
92 (;'m2' i5'2'm 
94 6mm 6" rn" m 
95 6'/mmm" 6'/m'm'm 
97 6ram 6m' m' 

100 6'/mm'm" 6/m" m' rn" 
101 6'/mmm 6/m'mm 
102 6'/mm'm" 6'/mm'm 
111 m3 m'3 
115 ~[m3 ~'3 m' 
116 432 4'32' 
117 m3m m3m' 
121 m3m m'3m" 
122 m3m m'3m 



D. A. S U M B E R G ,  K. K. D A Y A N I D H I ,  P. M. P A R K E R  A N D  R.  D.  S P E N C E  341 

and G have identical multiplication tables when con- 
sidercd in the abstract and thus are isomorphic. When 
H is grey, it is equal to the direct product group 
G ×1'  and hence it has two representations for each 
representation of G which are readily generated by the 
direct product procedure. If, however, the time- 
reversing elements of the grey and black-white Heesch 
groups are interpreted as antiunitary operators, then 
the number of nonequivalent irreducible corepresenta- 
tions of H (Wigner, 1959) is no longer necessarily 
equal to the number, or twice the number, of nonequi- 
valent irreducible representations of G. Rather, the 
number of nonequivalent irreducible co-representations 
of H is less than or equal to the number of classes of 
S, and it is less than the number of classes of S by the 
number of pairs of nonequivalent irreducible represen- 
tations of S which 'stick together'. For the grey 
groups, the pairs of nonequivalent irreducible represen- 
tations of S which stick together are those with com- 
plex characters, but this is not generally true for the 
black-white groups (Dimmock & Wheeler, 1962). 

Errata 

We give in Table 4 a listing of errata we have located 
in Table 1 of Spence & van Dalen (1968). 
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Ind6termination sur les Dimensions de la Maille magn6tique dans l'l tude par Diffraction 
neutronique sur Poudres de Corps cubiques ou uniaxes 

PAR M. WINTENBERGER ET R. CHAMARD-BOIS 

Diffraction Neutronique, CEN-G, C(dex 85, 38-Grenoble-Gare, France 

(Recu le 3 jam'ier 1972, revu le 28 fdvrier 1972) 

An ambiguity arises in the study by powder neutron diffraction of compounds where the magnetic 
~k atoms lie on a uniaxial or cubic Bravais lattice, when the magnetic lines are indexed {~kl} or {~-J}. 

Many multiaxial configurations, all having the same isotropic coupling energy, are compatible with a 
given set of lines. For a simple cubic lattice it is shown that every multiaxial configuration is indis- 
tinguishable, using powder intensities, from a particular uniaxial one, and that both have the same 
dipolar energy. 

Introduction 

On salt (Shirane, 1959) que, dans un compos6 5. struc- 
ture magn6tique colin6aire o~ les atomes sont aux 
noeuds d'un rdseau de Bravais cubique ou uniaxe, la 
diffraction neutronique sur poudres ne permet pas de 
d6terminer compl~tement la direction des moments. 
Par ailleurs, dans certains cas: MnO (Li, 1955; Keller 
& O'Sullivan, 1957; Roth, 1958), flMnS (Keffer, 1962). 
MnTe2 (Hastings, Corliss, Blume & Pasternak, 1970), 
des alliages fcr-manganbse (Kouvel & Kasper, 1963; 
Umebayashi & Ishikawa, 1966), il apparait une ind6- 
termination entre des structures colin6aires et des struc- 
tures multiaxiales, mais il n'y a pas d'ambiguit6 sur les 
dimensions de la maille magn6tique. 

Nous 6tudions ici un type d'ind6termination ana- 
logue mais qui porte sur les directions des moments et 

en m~me temps sur les dimensions de la maille. Soit, 
par exemple, un r6seau de Bravais quadratique ou 
hexagonal pour lequel les indices des raies magn6tiques 
d'un diagramme de poudre, rapport6s 5. la maille 
chimique, sont de la forme {~kl}. On peut interprdter 
ceci en faisant l'hypoth6se d'une structure magn6tique 
colin6aire de vecteur de propagation k [½,0,0], la maille 
6tant doubl6e dans la direction x par exemple. Mais 
une hypoth6se plus g6n6rale consiste 5. consid6rer que 
l'on peut observer la superposition de r6flexions ~kl et 
h§l, la maille magn6tique pouvant &re doubl6e dans les 
deux directions 6quivalentes x et y. Le m~me probl6me 
se pose 6videmment pour un r6seau cubique ou 
rhomboddrique avec une indexation de type {~kl} ou 

Nous avons d6js. consid6r6 ce cas pour le compos6 
cubique DyCu (Wintenberger, Chamard-Bois, Belak- 


